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Note that the controlled subsystem of four or five equations in this problem is an 
uncontrolled scalar control, even if it depends on all the phase variables of the problem. 
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ON THE CONSTRUCTION OF A BOUNDED CONTROL IN OSCILLATORY SYSTEMS* 

F.L; CHERNOUS'KO 

The motion of a linear controlled system from any initial state to a 
given final state is considered when there are geometric constraints on 
the control. One way of constructing the control when there are no 
constraints is to use a control signal formed by a linear combination of 
natural motions of the uncontrolled system /l, 2/. In the present paper 
this control method lsusedwhen there are geometrical constraints on the 
control functions. Sufficient conditions are obtained, under which this 
control law solves the problem in finite time. The same approach is 
applied to a multifrequency system of linear oscillators (pendulums) which 
are scalarly controlled. The control law is obtained and the process time 
is estimated. The control is also found for a two-mass system which 
contains an oscillatory unit. 

1. Formulation of the problem. Consider a linear controlled dynamic sytstem with a 
-bounded control 

5' = A @)x + B (Qu (1.1) 
I u WI < a, a >o (1.2) 

Here, x is the n-dimensional vector of phase coordinates, u is the m-dimensional control 
vector, A (t) and B(t) are n X n and nXm matrices respectively, piecewise continuously 
dependent on time t, and a is a positive constant. 

We shall construct the control u(t) which satisfies the constraint (1.2) for t E It,, T1 
and moves the system from the initial state 

*Prikl.Matem.Mekhan.,52,4,549-558,1988 
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5 (to) = 39 (1.3) 

to the final state 

x(T) =a+ V.4) 

Here, so, 2% are any given n-dimensional vectors, the initial instant t, is assumed to 
be given, and the instant X when the process terminates may be either fixed or free (T > to). 

The fundamental matrix (D (t)of the homogeneous system (1.1) is given by the conditions 

W = A (t)tD, Q, (to) =L E, (1.5) 

Here .%', is the R X ?8 identity matrix. We write the solution of system (1.1) which 
satisfies the initial condition (1.3) 

(1.6) 

Substituting the boundary condition (1.4) into (1.6), we obtain 

T 

~-a(~)B~~)~(~)~~=~*, CC*=dtt-'(T)sl- 58 (l.7) 

The required control u(t) must therefore satisfy the constraint (1.2) and condition (1.7). 
Recall that construction of the time-optimal control of system (l,l), (1.2). which moves 

it from state (1.3) to state (1.4) in the shortest time, reduces, by the maximum orincinle 
/3/, to solving a system of n transcendental equations. The method given below, which was 
proposed in 11, 2/ for the case when there are no constraints on the control, does not provide 
time-optimality, but is simpler for calculation and realization. 

2. The control method. We seek the control that solves problem (l.l)-(1.4) in the 
form 

u (t) = QT (t)c, Q (t) = W' (t)B (t) (2.1) 

Here, c is an n-dimensional constant vector, Q(t) is an nxm matrix, and T denotes 
transposition. Substituting (2.1) into (1.7), we obtain 

T 

R(T)e=x*, R(T)= fQWQVW 
1. 

(24 

(R(T) is a symmetric nXn matrix). 
We take the quadratic form fv is an n-dimensional constant vector) 

(RfT)v,v)=STIQT(t)",adl~s (2.3) 
1. 

It follows from (2.3) that A(T) is a non-negative definite matrix. we know /4/ that, 
when system (1.11 is completely controllable, the integral (2.3) does not vanish for any con- 
stant up 0. Then, iR(T) is positive definite and the linear system of algebraic Egs. (2.2) has 
the unique solution 

c = R-' (T)i (2.4) 
We will give simple sufficient conditions for the constraint (1.2) to be satisfied for 

the control law (2.1). 

Theorem. For some T> to let the matrix R(T) be non-singular, i.e., the condition for 
complete controllability holds, and for any n-dimensional vector u, letushave the inequalities 

I Q= tw (T)u I B p (2-1 I IJ I, t E it,, Tl (2.5) 

I I? (T)K (2% I > I. (T)I v I (2.6) 

nere,K (T) is a non-singular n x n matrix, p (T)>O and h(T)> 0 are positive 
scalars, and v is a constant n-dimensional vector, while the inequality (2.5) must bold for 
all t E It,, 2% 

Then, if we have the condition 

I x* I Q ah mw- fT) (2.7) 

the control. u(1)qiven by (2.1), (2.4) takes system (1.1) from state (1.3) to state (1.4) at 
the instant T and satisfies the constraint (1.2) for all_ tE [to, T]. 
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Proof. The control (2.1), (2.4) is constructed in such a way that conditions (1.3) and 
(1.4) hold. By (2.1) and (2.4), we have 

1 u @)I = I p (QR_' (T&z* 1 = 1 QT (t)K (T)K_1 (T)R_' (T)x*l 

We use inequality (2.5) 

1 u (t)/ < I” (T)I K-’ (W-l (T)z* I 

In the inequality obtained we put x * = R(T)K(T)u and first apply (2.6) and then (2.7): 

lu @)I < tL (T)I u I< p (T)h-‘(T) 1 R (T)K(T)u 1 = 
p (m-'(T)1 z* I < a 

We have thus shown that the constraint (1.2) holds, which proves the theorem. 

Notes. lo. The non-singular matrix K(T) in (2.5) and (2.6) can be chosen arbitrarily, and 

in particular, we can take K= E,. The arbitrary choice of K(T) can be useful, since it extends 

the range in which our sufficient conditions are applicable. 
2O. In the case of the identity matrix K= E,, the number h(T)is, by (2.6), a lower bound 

for the least eigenvalue of the matrix R(T). 
3O. To calculate the control (2.1),wehave to solve the linear system of Eqs.(2.2), where- 

as in the time-optimal case we have to solve a system of transcendental equations. 
4O. The control (2.1) is a continuous function of time, whereas the time-optimal control 

is in general discontinuous. 

3. A system of controlled oscillators. Consider a system of harmonic oscillators, 

controlled scalarly: 
si" + oi2E* = U (3.1) 

Here, Et are generalized coordinates, the constants oi>O are the natural frequencies 

of the oscillators, and throughout i = 1, . . ..n. u is the scalar control, on which is imposed 

the constraint (a is a constant) 

I 11 (t)I < a j3.2) 
As a mechanical model of system (3.1) we can take a system of mathematical pendulums, 

suspended from a support G which moves horizontally with acceleration u (Fig.1). The Ei,equal 

to licpl, are the small linear deviations of the pendulums from their points of suspension, 

where 11 is the length, and 'pi the angle of deviation of the pendulum from the vertical. 
Another mechanical model of system (3.1) is a set of masses connected by springs to the 

support G. The system as a whole moves translationally and horizontally, El being the spring 

elongation, and u the acceleration of the body G (Fig.2). 

Fig.1 Fig.2 

Let us find the control u(t) which satifies the constraint (3.2) and moves the system 

(3.1) from its intial state at t, = 0: 
Ei (0) = E?, El' (0) = lli 

to the given final state 

(3.3) 

(3.4) 
of 

'(3.5) 

We shall 

generality if 

El (n = El’, fr’ (T) = rlr’ 
assume that the frequencies 01 are positive and 

we number them in increasing order, put oI = 0, 

Q = os;_l(w+l - 4 > 0 

0=0,<01<...<0, 

distinct. There is no loss 
and introduce the notation 

Note that, when B>O, system (3.1) is completely controllable /5/. If some frequencies 
are the same, the system becomes uncontrollable. For, if the initial states of two oscillators 
with equal frequencies are different, there is no control by which we can arrange for simultane- 
ous extinction of the oscillations of these two oscillators: the phase difference of their 
oscillations will remain constant. 

Using the change of variables 
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ii’ = yi, ft = Oi_lZi (3.6) 

we can reduce system (3.1) to the form 

y; = -0izi + u, Zi' = oiyi (3.7) 

The phase vector of system (3.7) is a 2n-dimensional column vector, formed from the 
components of vectors y and 2. 

It can be shown that the fundamental matrix of the homogeneous system (3.7), given by 
conditions (1.5), is orthogonal and has the form 

a 

diag(coso,t) 
O(t) = 

diag(- sinoft) 

dEag(sino,t) diag(cosoit) II (3.8) 

m-1 (t) = @T (t) 

Uere , diag(aE) denotes an n X n diagonal matrix with diagonal elements ai. 
For system (3.7), matrices B(t) and Q(t) are 2n-dimensional column vectors. By (3.7, (2.1) 

and (3.8), their elements are 

Bi = 1, B,+i = 0, Qi (t) = COS Uit, Qn+i = -sin oit (3.9) 

From (3.9) and the second of Eqs.(2.2), we have 

(3.10) 

EIere, Qk, Rk are n X n matrices. Their elements are calculated bv means of (3.9) and 
(3.10) (throughout, i,j = 1, . . ., n) 

Qij’=~~s~$cosojt, Qij*=sinoEtsino+ (3.11) 

QJ’= - coso,t sin+; 

sin(oi + oj) T 

2 (O* + Oj) 

Cos2o.F-E 
Riio= 4ii , R,f= 

cos(q-w,)T-1 

’ (Oi - Oj) 
+ 

cos (a1 + ml) T - 1 

2(oi+oj) ’ i#j 

Note that, by condition (3.5), 

Oi 2 Q, 1 Oi - Wj I> 9, Oi + WI> 352, i#j 

Using (3.12), we can obtain estimates for the elements (3.11) of the matrix R (T): 

I R,ir - V2T 1 < ‘1/P, ( Riio 1 .< V&P 

I Rti” I < ‘/z I Oi - 01 1-l + ‘/z (01 + oI)-~ Q p/~Q-’ 

) Ri,O 1 < ‘/&-‘; k = 1, 2; i p j 

(3.12) 

(3.13) 

Under conditions (2.5) and (2.6) we put K(T)= E z,, and find +A (T) and h(T).We estimate the 
left-hand side of inequality (2.5) by using the Cauchy inequality and expressions (3.9) for 
the components of the vector Q(t): 

IQT~~~~I~lQQ(f~ll~I=~“al~I 
Consequently, in (2.5) we can put 

EI (T) = rt’/* (3.14) 

We will estimate the left-hand side of inequality (2.6). For any vector V, we have 

I R (T)u I = I VZTu + [R(T) - ‘l,TEznlvl > VzT 1 u I - 1 Mv 1. (3.15) 

M = R (T) - ‘12TE2, 

EIere we introduce the symmetric 2s~ 2n matrix M. For its elements, using relations 
(3.10) and (3.13) for the matrix R(T), weobtain me estimates 
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(3. f 6) 

By the Cauchy inequality, we have (the summation here and in (3.18) is from 1 to 2n) 

Recalling estimates (3.16) and that M is symmetric, we obtain 

ilJ .= < 
2n 

Y+ 
2(12% - ,L)4 

+ (20)2 
-?!L+ 2 (n* - n) 16 

'1 \ (4Q)" (3sl)" (3W 

= 5,(64,2 - 55) 
72G 

I* 7 

(3.17) 

(3.18) 

From (3.17) and (3.18) we have 

I Mu 1 < k,ir’u 

k,, = 15~2 (64n - 55)/721’$ IZ > 1 

113.19) 

Using (3.15) and (3.19), we obtain 

1 R (T)v 1 > (VzT - k,P-‘)I u I ~(3.20) 

Thus, condition (2.6) holds if T> 2k,Q-‘. Then, comparing (2.6) and (3.20), we obtain 

h (2') = VZT - k,B-’ > 0 (3.21) 

Substituting relations (3.14), (3.21) in (2.7) and solving for T, we get 

T !x 2n’hm1 I x* 1 + 2k,W (3.22) 

The vector I* is given by the second relation of (1.7), while vectors x0,x1 are, by 

(3.6), (3.3) and (3.4): 

xo = {Yi Co), zi (“)}T = {?i”7 WiEi”}T (3.23) 

x1 = (~2 (T), zi (T)}T = {qi”, OiEi’}T 

In the control law (2.1) we substitute the elements of Q(t) from (3.9): 

24 (t) = X (ci Cos wit - c,,+j sinwit) (3.24) 
*=1 

By the theorem of Par.2, under condition (3.22), the control (3.24) in which the vector 

c is given by (2.4), and the matrix R(T) is given by (3.10), (3.11), satisfies the constraint 

(3.2) and moves system (3.7) (or (3.1)) from the initial state (3.3) to the final state (3.4) 
in time T. Note that the time 2' increases as 1x* 1 increases, as the scope (i.e., a) of the 

control falls, and as the natural frequencies come closer together, i.e., as 61 falls. 

4. A special case. Consider the problem of extinguishing the initial oscillations, 

i.e., the problem of taking the system to its equilibrium state. In this case we have zl= 0, 

and from the second of Eqs.(1.7) and (3.23), we obtain (E(f) is the energy of the oscillation) 

1 I* Is = -$ [(qiO)* f u~Z(F;~“)~] = 2E0, Eo = E (0) (4.1) 
i=1 

n 

E(f) = +z ~[5,'(W+~i*IE, (W (4.2) 
ill 

Using (4-l), we can rewrite (3.22) as 

T > 2a-' (2nEO)"* + 2k,W1 (4.3) 

Under condition (4.3), the control (3.24) moves system (3.1) from the initial state (3.3) 
to the equilibrium state Ei = fi' = 0. 

In the special case n=l the minimum time which satisfies condition (4.3) is equal to 
(we use the second relation of (3.19)) 

T’ = 2a-' (2&~'~' + (V&+-1 (4.4) 

We compare the time (4.4) with the optimal control time under the condition 

e = aE,-“‘co,-’ < 1 (4.5) 

which signifies that the control is relatively small. Then, the approximate optimal control 



431 

of system (3-l), (3.2) with n= 1, which is constructed in /5/ by the small parameter method 

/6/, is 
u = --a sign (&') (4.6) 

while the phase coordinates are 

Er = + (2E)"'or-1 COS (w,t + a) (4.7) 

&*' = 7 (2E)"l sin (art + a) 

Here, the energy E and phase CL are slow variables. 

We differentiate the energy E of (4.2) with respect to t, and use Eqs.(3.1), (4.6) and 

(4.7): 

E’ = %I’ (%,” f ~~~51) = - %l’u = --a I 51’ j = --a (2/Z)'/' 1 ain (elt + a) 1 

In accordance with the averaging method of /6/, we average the right-hand side of this 

last equation with respect to t, regarding E and tl as constants. We obtain the equation of 

the first approximation, which we integrate: 

12E (1)1'/' = (2EO)'l* - Zn-'ao,t 

Hence it follows that the time To, needed for extinction of the oscillations (E (To) = 0). 
is equal to 

p = '/,na-' (2EO)"' 14.8) 
Expressions (4.4) and (4.8) have to be compared under condition (4.5), under which the 

approximate expression (4.8) is obtained. The second term in (4.4) is here much smaller than 
the first, while the principal parts of (4.4) and (4.8) differ by a factor. We have 

T’ITO z 4/n = 1.273 (e 4 I) 

This relation gives an estimate of the closeness of the results obtained by the present 

control method and the time-optimal control. 

5. A pendulum with a controlled point of suspension. We again consider the 

systems shown in Figs.1 and 2, in the case of a single oscillator (n = 1) but assuming a 
displacement E. of the support G. The equations of motion and the constraint (3.2) take the 
form 

E," + 0:5r = u, fo" = u, I u I< a (5.1) 
All the notation here is the same as in Par.3. Note that the displacements E. and El are 

measured in opposite directions, SO that the absolute oscillator displacement is &, - &. 
We also take a modified statement oftheproblem, in whichthe systems of Figs.1 and 2 are 

controlled, not by accelerating the support G, but by means of a force F applied to the body 
G and bounded in value by the constant F,. Then, instead of relations (5.1), we have the 
equations and the constraint 

E," + %Yr = 50", (m, + m&o"- mrS1" = F, IF I-< F, (5.2) 

where m, is the massofthe support G, and m, is the mass of the oscillator. We introduce the 
system centre of mass coordinate 

and transform relations (5.2) to 

El” -t aI* (m, + ml)mo-l& = Fm,-’ 

5” = F (m, + m,)-‘, 1 F 1 < F, 

(5.3) 

The change of variables and constants 

5' = (m. + m,)m,-lg, (~0’)~ = a,2 (m, + mI)mo-l 

u = Fm,-’ 

transform relations (5.3), apart from the notation, to the form (5.1). Thus relations (5.1) 
also describe systems which are controlled by means of a bounded force. 

To simplify (5.1), we make the change of variables 

Er = CO,-"ay, &a = or-*uz (5.4) 
t = q-Y, II, = au’ 

After the replacement (5.4), relations (5.1) become 

y” + y = u, z” = u, I u 1 < 1 (5.5) 

Henceforth we shall consider the system in the form (5.5) and denote by pointsderivatives 
with respect to the new time t', while the primes of t’ and u' in (5.5) will be omitted. 

Let us construct the control u(t) which satifies the condition 1 u ]<I and moves system 

(5.5) from the given initial state 
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y (0) = y”, y’ (0) = u”, z (0) = 20, 2’ (0) = d (5.6) 

to the given final state 

y (T) = y', y' (2”) = d, 2 (2”) = 21, z’ (T) = IL’1 (5.7) 

The quantities on the right-hand sides of Eqs.(5.6) and (5.7) are constants, and T>O 
is the as yet unknown time when the process ends. 

The phase vector of system (5.5) is formed by the variables y, y',z and z'. Following 
the general scheme of Par.2 for constructing the control, we find the fundamental matrix given 

by conditions (1.5), and then its inverse 

cost -sint 0 0 

sin t cost 0 0 
a-1 (t) = 

0 0 1 -t 

0 0 0 1 

The matrix O(t) of (2.1) is here the four-dimensional column vector 

QT (t) = (-sin t, cos t, --t, 1) 

while Eq.(2.1) takes the form 

24 (t) = -cr sin t + c2 COs t - cat + c4 

(5.9) 

(5.10) 

The expression forthematrix R(T), givenbythesecondof Eqs.(2.2) and (5.9), and hence 

the solution of system (2.2), is greatly simplified if we put T = 2nk, k = 1,2,... . The 

matrix R(X) then becomes 

l/J 0 -T 0 

0 0 0 R(T)= ‘/,T 

_T ,, ‘JP - ‘12T2 

0 0 - ‘!2T2 T 

We solve system 

of the vector x* in 

(1.7) and (5.8): 

(2.2) in the light of this expression for R(T)and express the components 

terms of the boundary conditions (5.6), (5.7) with the aid of relations 

ri* = y' - yo, x2* = vl - 00 

x,* = z’ - Tw’ - 20, x4* = &J - & (T = 2nk) 

We obtain 

c, = 2 IT* (y’ - y”) + 12 (z’ - z”) - 62’ (w” + w’)IS-” 

cz = 2 (9 - u”)T-’ 

cQ = 6 [4 (y’ - y”) + 2 (z’ - z”) - T (w” + wl)W1 
cd = 2 16T (y’ - y”) + 3T (z’ - 9) - (Ta + 12)~’ - 

2 (Ta - 6)w”IS-’ (S = T (T2 - 24)) 

(5.11) 

It remains to choose the integer k in the relation _T = 2nk in such a way that the 

control (5.101, (5.11) satisfies the condition 1 u I< 1 for t cz IO, Tl. By (5.10), (5.111, 
we have 

1 u (t)I -< 1 cl ] + 1 c2 I + I cp - c,l I < 2T-1 (T2 - 24)-l [Tax (5.12) 

) yl - yo ) + 12 J 9 - 9’1 + 6T ) w1 -j- ID” ) C (Tz - 

24) I u1 - u” I + 6 ) y’ - y” 1 1 T - 2t I+ 3 19 - z” I I T - 

2tt + “v (t)l 
9 (t) = I (Ta + 12)~’ + 2 (TZ - 6)w” - 3Tt (w’ 3 to“)1 

Here, T = 2nk, k < 1, so that Ta > 24. 

Since $(t)has its maximum at one end of the interval 10, T], we have 

II, (t) .< max {li, (0), 11, (T)} = Vz max (1 3T2 (w” + d) - 

(Ta - 24)(& - w”)I, I 3Ta (zd’ + wl) + (T* - 24)(d - 

w”)l} = V2Ta I UP + w1 ) + Vz (Ta - 24) I d - III” 1 

Note also that 1 T - 2t ) < T, TV IO, Xl. 
Using these estimates, we obtain from (5.12): 



I u WI \< 2-l If1 (T) IY' - YO I + 2 I v1 - v” I + 
fz (T)I w1 + w” I + I w1 - w” II + 2T-“fi (T) I .zl - 20 I 
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(5.13) 

2T'$12T 
fr(T)= TP_24 7 

3T"+12T 
f,(T)= 2,*__24 

On the right-hand side of (5.13) we replace the functions jr(T), fs(T), which are strictly 
decreasing for T> T, = 2n, by their maximum values at T = T,, and in the resulting in- 
equality we put T = 2nk, T, = 2n. We obtain 

I u (t)I Q Ak-l + Bk-a (5.14) 

A= 

&-w’I, B= $$$ jzl-zo~ 

It follows from (5.14) that the condition I u I< 1 holds if 
ka -Ak-B>O, 

i.e., if 

T = 2nk, k > k* = V2 IA + (Aa + 4B)W (5.15) 

Relations (5.10) and (5.11) together with (5.15) for T and (5.14) for A, B, fully define 
the required control u(t) in explicit form in terms of the initial and final states. 

We consider a special case of boundary conditions (5.6) and (5.7): 
lJo = fl = z0 = "0 = v' = $ .zz WI = 0 (5.16) 

corresponding to displacement of the entire system of Figs.1, 2, from the equilibrium state 
to the equilibrium state at a distance 21. In the case (5.16), the time-optimal oontrol is of 
the relay type (u= fi) and has three switching points /5/. The optimal time To is the 
unique positive root of the equation 

I/, (T")2 - 2 (arccos [co+ ('/,T")l)* = ) d 1, 

while we have the relations 

To > 2 1 z1 I’/., To - 2 1 z1 I”* as 1 z1 1 - CO (5.17) 

Let us compare this result with the displacement time forthecontrol law (5.10). From 
(5.14)-(5.16), we have 

T = 2s (ent k* + 1). k* = B'/' = 0, 7965 111 I'/* 

Hence, for large 1~~1, we obtain 

T - 5.005 1 9 I”*, ( 21 ) - M (5.18) 

If we use the estimate (5.13) directly in the case (5.16) as IzlI-oo, we obtain 

T - [Zfz (co) 1 z1 I]"' = L+ I z1 J"* = 2,449 1 d I",, I 21 I _ 00 (5.19) 

Comparing (5.17)-(5.19) for To,T, we see that, as Izll-00, they differ by coefficients 
which are due, both to the difference of the control (5.10) from optimal, and to the majoriza- 
tion which is performed when obtaining estimate (5.14). Notice that estimate (5.19) is much 
closer to (5.17) than is (5.18), because of the reduced "loss" with majorization. 

Notice in conclusion that the time-optimal controls fortheproblems consideredinpara- 
graphs 3-5 are not known for arbitrary initial conditions. 
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